Logotipo del repositorio
Comunidades
Todo RID UNRaf
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Iniciar sesión
¿Nuevo Usuario? Pulse aquí para registrarse ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Ferrero, Mariano"

Seleccione resultados tecleando las primeras letras
Mostrando 1 - 1 de 1
  • Resultados por página
  • Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Predicción de sólidos totales en una industria láctea mediante la aplicación de técnicas de aprendizaje automático
    (Universidad Nacional de Rafaela, 2025) Berra, Delfina; Della Torre, María; Ferrero, Mariano
    El presente trabajo detalla la experiencia de un proyecto tecnológico llevado adelante entre una importante industria láctea en la provincia de Santa Fe y el Laboratorio de Gestión de la Información de la Universidad Nacional de Rafaela. La misma consistió en el análisis de sólidos totales en leche cruda y se llevó a cabo mediante una metodología cuantitativa tomando de base el modelo CRISP-DM. Para la etapa de comprensión de datos se realizaron reuniones entre las partes. En la instancia de análisis, se determinaron las variables a ser utilizadas y su procesamiento en modelos estadísticos. Durante el modelado, se analizaron diferentes alternativas con algoritmos de aprendizaje automático, determinando que el que mejor funcionaba era regresión lineal. Para evaluarlos se tomó de referencia el error promedio. Por último, se desarrolló una herramienta, a través de un código en el lenguaje de programación Python, adaptada a la empresa y que pudiera predecir los sólidos totales. El trabajo permitió posicionar a la Universidad como referente en tecnologías y mejora de procesos, como así también acercar a la empresa a la ciencia de datos y a tomar decisiones ágiles e informadas a partir de la reducción de tiempos operativos en la actualización de recetas.

Software DSpace copyright © 2002-2026 LYRASIS

  • Política de privacidad
  • Acuerdo de usuario final
  • Enviar Sugerencias